Formation of 2- and 1-methyl-1,4-dihydronaphthalene isomers via the crossed beam reactions of phenyl radicals (C6H5) with isoprene (CH2C(CH3)CHCH2) and 1,3-pentadiene (CH2CHCHCHCH3).
نویسندگان
چکیده
Crossed molecular beam reactions were exploited to elucidate the chemical dynamics of the reactions of phenyl radicals with isoprene and with 1,3-pentadiene at a collision energy of 55 ± 4 kJ mol(-1). Both reactions were found to proceed via indirect scattering dynamics and involve the formation of a van-der-Waals complex in the entrance channel. The latter isomerized via the addition of the phenyl radical to the terminal C1/C4 carbon atoms through submerged barriers forming resonantly stabilized free radicals C11H13, which then underwent cis-trans isomerization followed by ring closure. The resulting bicyclic intermediates fragmented via unimolecular decomposition though the atomic hydrogen loss via tight exit transition states located 30 kJ mol(-1) above the separated reactants in overall exoergic reactions forming 2- and 1-methyl-1,4-dihydronaphthalene isomers. The hydrogen atoms are emitted almost perpendicularly to the plane of the decomposing complex and almost parallel to the total angular momentum vector ('sideways scattering') which is in strong analogy to the phenyl-1,3-butadiene system studied earlier. RRKM calculations confirm that 2- and 1-methyl-1,4-dihydronaphthalene are the dominating reaction products formed at levels of 97% and 80% in the reactions of the phenyl radical with isoprene and 1,3-pentadiene, respectively. This barrier-less formation of methyl-substituted, hydrogenated PAH molecules further supports our understanding of the formation of aromatic molecules in extreme environments holding temperatures as low as 10 K.
منابع مشابه
A VUV photoionization study of the multichannel reaction of phenyl radicals with 1,3-butadiene under combustion relevant conditions.
We studied the reaction of phenyl radicals (C(6)H(5)) with 1,3-butadiene (H(2)CCHCHCH(2)) exploiting a high temperature chemical reactor under combustion-like conditions (300 Torr, 873 K). The reaction products were probed in a supersonic beam by utilizing VUV radiation from the Advanced Light Source and by recording the experimental PIE curves at mass-to-charge ratios of m/z = 130 (C(10)H(10)(...
متن کاملA crossed molecular beam and ab initio study on the formation of 5- and 6-methyl-1,4-dihydronaphthalene (C11H12) via the reaction of meta-tolyl (C7H7) with 1,3-butadiene (C4H6).
The crossed molecular beam reactions of the meta-tolyl radical with 1,3-butadiene and D6-1,3-butadiene were conducted at collision energies of 48.5 kJ mol(-1) and 51.7 kJ mol(-1). The reaction dynamics propose a complex-forming reaction mechanism via addition of the meta-tolyl radical with its radical center either to the C1 or C2 carbon atom of the 1,3-butadiene reactant forming two distinct i...
متن کاملAn experimental and theoretical investigation of the formation of C7H7 isomers in the bimolecular reaction of dicarbon molecules with 1,3-pentadiene
Article history: Received 5 April 2014 In final form 19 May 2014 Available online 26 May 2014 We report on the crossed molecular beam reaction of dicarbon, C2 (XRg, aPu), with 1,3-pentadiene (C5H8; XA0) conducted at a collision energy of 43 kJ mol 1 under single collision conditions and studied by ab initio and statistical calculations. The reactions involve indirect scattering dynamics initiat...
متن کاملReaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium.
Bimolecular reactions of phenyl-type radicals with the C4 and C5 hydrocarbons vinylacetylene and (methyl-substituted) 1,3-butadiene have been found to synthesize polycyclic aromatic hydrocarbons (PAHs) with naphthalene and 1,4-dihydronaphthalene cores in exoergic and entrance barrierless reactions under single-collision conditions. The reaction mechanism involves the initial formation of a van ...
متن کاملElementary reactions of the phenyl radical, C6H5, with C3H4 isomers, and of benzene, C6H6, with atomic carbon in extraterrestrial environments
Binary collisions of ground state carbon atoms, C(3P j), with benzene, C6H6(XA1g), and of phenyl radicals, C6H5(XA1), with methylacetylene, CH3CCH(XA1), were investigated in crossed beam experiments, ab initio calculations, and via RRKM theory to elucidate the underlying mechanisms of elementary reactions relevant to the formation of polycyclic aromatic hydrocarbons (PAHs) in extraterrestrial e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2015